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Abstract--The arbitrary Lagrange-Euler (ALE) finite element technique is used to simulate 3-D 
displacement of two immiscible Newtonian fluids in vertical annular wells. For equally viscous fluids the 
effect of distinct fluid densities is investigated in the region of low to intermediate Reynolds numbers. 
Comparison with a simple theory for drainage of thin films is performed. It is found that recirculations 
deform the fluid-fluid interface significantly in situations dominated by buoyancy forces. Also, a deviation 
from the concentric annular geometry is shown to induce azimuthal transport of fluid. Finally, the 
efficiency of the displacement is analysed for various flow situation. Copyright © 1996 Elsevier Science 
Ltd. 
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1. INTRODUCTION 

The displacement of one fluid by another in annular geometries is an important process in 
connection with drilling of oil/gas-wells. The main reason for this is that the success of the primary 
cementing operation (see e.g. Moore 1974) is crucial in ensuring a long lasting production from 
the well. In the cementing process a displacing cement is pumped down the well and up in the 
annular region outside the casing where it displaces mud and other drilling fluids. The aim of this 
process is to provide zonal isolation in the wellbore, i.e. to prevent oil, gas or water in one zone 
to flow into another zone, the formation say. 

Two key factors in selecting the cement properties are fluid rheology and density. In this work 
we will focus on the effects of a difference between the densities of the displacing fluid (cement) 
and the displaced fluid (mud, drilling fluids). In order to reduce the number of  dimensionless 
parameters in the analysis the fluids will be assumed Newtonian with equal viscosity. 

A denser displacing fluid is known to improve the result of the cementing operation (Lockyear 
et al. 1989; Jakobsen et al. 1991; Tehrani et al. 1993). For  concentric annuli, this improvement 
appears to be due to a flattening of the interface. As a result of this flattening recirculations appear 
near the interface (Long 1991). For  eccentric annuli a denser displacing fluid also induces azimuthal 
transport of fluid from the wide to the narrow part of  the annular space. This also improves the 
cementing operation (Tehrani et al. 1992; 1993). 

The experiments by Long (1991) and Tehrani et al. (1993) have initiated the present investigation. 
In their work they considered the displacement of one fluid by another in a vertical annular 
geometry with variable eccentricity and an inner radius of 80% of that of  the outer casing. They 
used both Newtonian and non-Newtonian fluids. 

Previous numerical simulations of fluid-fluid displacement (Graves and Collins 1981; Tehrani 
et al. 1992) have solved the two phase flow problem on a fixed mesh. In order to distinguish between 
the two phases, they define concentrations for the fluid constituents, and solve an advection 
equation for the concentrations. In this approach the phase boundary will not coincide with the 
mesh points. Thus the concentrations cannot be completely discontinuous, but the transitions take 
place across a very thin layer. 

In this work we have decided to regard the displacement process as a system with two immiscible 
fluids. The present simulations therefore include a deformation of  the computational domain as 
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well as a tracking of the fluid-fluid interface. The advantage here is the knowledge of the precise 
interface position at any time during the displacement. In addition we have considered the full 
three-dimensional displacement problem. A suitable numerical technique is the finite element 
method using an arbitrary Langrangian-Eulerian kinematic description (see, e.g. Hughes et al. 
1981; Huerta  and Liu 1988; Szabo 1994; Szabo and Hassager 1995). 

2. THEORY 

2.1.  Geometry  and non-dimensional  groups 

The formulation of a fluid mechanical problem equivalent to the experiments carried out by Long 
(1991) is outlined below. 

A general eccentric annular geometry is sketched in figure 1. The geometrical quantities are: the 
inner radius, R~, the outer radius, R2 and the center difference, 6. Based on these variables, two 
non-dimensional quantities can be defined: the ratio, ~c = R~/R2, between the radii and the 
eccentricity, e = 6/(R2 - R1). Also, we define a characteristic length, h = R2 - R~. For  the two 
fluids we denote by p~ and p2 the densities of  the displacing and the displaced fluid respectively. 
The viscosities /~ and p2 are similarly defined. 

In the axial displacement problem there are two fluid phases in which the equations of  continuity 
and motion must be fulfilled. Based on these equations four non-dimensional parameters are 
introduced in a natural way. The Reynolds number in fluid-phase m 

Re,, h~p,, = , m = 1, 2 [1] 
pm 

where f is the average linear fluid velocity based on a constant volumetric flow-rate. 
The buoyancy number as defined in Long (1991) 

Bu - (p' - pOgh2 [2] 

as well as the viscosity ratio 

N~ - / * 2  [3] 
#l 

The Reynolds number is a measure of  the inertial forces relative to the viscous forces. In the same 
way, the buoyancy number is a measure of  the buoyancy forces relative to viscous forces. 

, ~ Axis of symmetry 

Initial fluid-fluid interface 

R2 

R1, 

Inflow 
Figure 1. Eccentric annular space between cylinders of  radii R~ and R2 with the centers displaced by a 

distance 6. The space is occupied by fluids 1 and 2 and g is the gravitational acceleration. 
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In addition the ratio of inertial forces to buoyancy forces is given by the Froude number defined 
here as 

pl~ 2 Rel 
Fr - (p, _ p2)gh = Bu" [4] 

Note however that only two of  the numbers Re~, Bu, Fr may be chosen independently. 
For  simplicity, N~ is chosen equal to unity in all numerical simulations. Moreover, the ratio 

between the two Reynolds numbers is held fixed in order to simplify the computational analysis 
further. Here Re = Re~ = 1.01 Re2. 

It is for the displacement process convenient to define a macroscopic measure of  the 
quality/efficiency, i.e. a way to quantify the amount of fluid from the displaced phase which is left 
behind the displacement front. One such nondimensional measure (Tehrani et al. 1993) for 
displacement in pipes can be written as, 

f ,  min{L, z(x, t)} dx dy Y, 

E(t) = , [51 

; L f A d x d y d z  

where L is the length of  an annular section, A is the cross-sectional area and z(x, y, t) is the position 
of  the interface measured from the entrance. In order to extract as much information as possible 
from [5] we introduce a dimensionless time T* = tf/L. Note that for plug flow T* would be unity 
at the moment of breakthrough. 

For  future reference we consider the special situation of laminar flow of  fluids of equal viscosity 
in a concentric annular geometry. Here we use the expression for the axial velocity (Bird et al. 1960) 
to obtain for the displacement efficiency 

E ( T * ) -  1 - - K  2 min 1,2T* 1 -  + ~ l n u  - u du [61 l + t c  2 t/ 

where t / =  - (1 - K2)/ln (K) is a constant. In particular we obtain the efficiency at breakthrough 

1 + ~ 2 _ q  
E, = 2 - q(1 -- In (q/Z))' [7] 

This basic result for the concentric annulus is illustrated in figure 2 where we recognise the linearity 
until breakthrough (at EB ~ 0.67 in simple laminar flow for K = 0.8). 

3. LUBRICATION THEORY FOR THIN DRAINING FILMS 

The flow in the displacement process will typically consist of a fluid front region, possibly an 
intermediate region and a draining film region. The flow in the draining film region was analysed 
by Flumerfelt [4] with a lubrication theory. Based on this lubrication theory we wish to develop 
here an evolution equation for the thickness of the draining film f (z ,  t). 

We consider then the geometry in figure 3. The internal viscosity is/~ and the film viscosity is 
/*2. The film thickness is denotedf(z ,  t). It is assumed that two mechanisms are responsible for the 
draining of  the film, a wall shear stress, and the density difference Ap = p~ - p2. The gravitational 
acceleration g acts in the negative z-direction. Quasisteady motion in the film is assumed. In 
addition we assume that the shear stress on the phase boundary is the result merely of the flow 
in the interior phase, and can be calculated from that flow alone. Thus the local relation between 
shear stress and volume flow rate is that for laminar slit flow with viscosity/~. 

The transient development of the film thickness is then given by the following quasilinear first 
order partial differential equation: 

2af  -~ft + (~f + ~ f  ) ~z = O, [8] 
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Figure 2. The displacement efficiency, E vs a dimensionless time T*. Linear approach from naught to one 
indicate plug flow (curve a) whereas passive displacement (curve b) in laminar flow achieves an efficiency 
close to one only for very large times. For comparison the curve produced by the lubrication theory in 

section 3 is given as curve c. 

where 

6f#, Apg [9] 
= h~t2' /3 = p2 

A general solution for f ( z ,  t) may be obtained for a boundary condition in the form: 

f ( z ,  O) = fo(z), fo(O) = O. 

This condition implies that the film thickness is zero at the entrance, so there is no inflow of phase 2. 
A key element in the determination of the properties of  the solution to the lubrication model 

[8] lies in the establishment of the characteristics [3]. We denote the parameter  along the 
characteristics s. The equations to be integrated along the characteristics are then: 

dt 
ds 1 [10] 

x 

h 

E 

Phase 1: #1, Pl 

• P 2  

f(z,*) 

z 

Figure 3. Defining sketch for the lubrication theory in section 3. 
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dz 
ds - a f  + flf2 [111 

The characteristics are given by 

d f _  0. [121 
ds 

z = (~f i (z0)  + #f~o (Zo))t + Zo. 

Note that f does not change along a characteristic. Furthermore, note that the characteristics 
are straight lines in the (z, t) plane. This means, that a given film thickness propagates with constant 
velocity. 

As long as j~(z0) is an increasing function the characteristics do not intersect, and the solution 
may be expressed implicitly as 

f (z ,  t) =J~(z - (~ f+  ~f2)t. 

We now wish to find an expression for the relative amount of  initial fluid left in a given annulus 
of  length L. One key reason why that can be defined is that the initial conditions become less 
important with increasing time• To illustrate this point, assume the specific initial profilej~(z) = yz. 
We then obtain for the solution 

z = f ( z ,  t)/? + (~f(z, t) + flf~(z, t))t). 

It follows that for large values of t and fixed 7 we may to a good approximation use: 

z = (~f(z, t) + ~f2(z, t)t. [13] 

In particular we obtain for a fixed "large" value z = L: 

L = (~f(L, t) + flf2(L, t))t. [14] 

The relative volume of the displacer in the annulus, E(t) defined in [5] may be obtained from 
a volume consideration: a volume consideration shows that 

/ 
2BLW(1 E(t)) 2~Lf(z ,  t) - df(z, -- = fjcr'"z t ) ) W .  

Here W is the length in the transverse direction. By introducing [13] we obtain: 

l _ E(t) _ f ( L ,  t) 1 (1 2 1 ) • B ff-£ ~ o t h ( L , t ) + - j f l f 3 ( L , t )  t. 

We may now use [14] to eliminate t /L as follows: 

(1 ) 
~f(L ,  t) + 5 flf  ( ' t) 

1 - E ( t )  - f ( L ,  t )  1 
B B ~f(L, t) + flf2(L, t) 

After some algebraic manipulations this may be simplified to: 

(1 + 2 BuN~y)y 

1 - -  E ( t )  = 1 + 1 
BuN~ 

u 

where y = f (L ,  t)/h is the nondimensional film thickness at z = L. 
Finally we need to solve for f (L ,  t) in [14]. The solution may be expressed as follows: 

[15] 

y =  1 +  9T* - 1  . [161 
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Here the nondimensional time, T* is defined as in section 2.1. 
Thus in summary, the displacement efficiency is simply given by [15] and [16]. In particular we 

see that: 

• The displacement efficiency does not depend on the ratio L/h, as long as L/h >> 1. 
• The displacement efficiency does not in this theory depend on the Reynolds number. 
• For large T* the viscosity ratio becomes more important than the buoyancy number in the 

determination of the efficiency. 

The lubrication model above can be expected to provide a reasonable description for the flow 
behind the front. Thus, the result for E(t) should be applied really only for T* > 1. 

4. THE FINITE ELEMENT MODEL 

4.1. Governing equations in the ALE description 

The equation of motion referred to an observation point moving with velocity w is (for reference 
see Lamb 1995 ([12.5]) or Szabo and Hassager 1995) 

p,,,  ~-~ -~ (V - -  W ) ' ( V v ) v = :  ~ - -  V p  -1- UmV2V -~- p i n g .  [17] 

In the same notation we write for the equation of continuity for an incompressible fluid 

(V.v),_= = O. [181 

Equations [17] and [18] are used augmented by the definition of w: 

w(¢, t) = ~ (z(¢, t)) [191 

where z(~, t) is a particular path labeled by 3. 
The formulation includes the following situations: w = 0 and w = v gives the Euler and Lagrange 

formulations respectively whereas w = w0 ¢ {0, v} is the ALE formulation. The space discretization 
of  [17] and [18] follows the mixed Galerkin finite element method (for reference see Brezzi and 
Fortin 1991 or Zienkiewicz and Morgan 1983) with trilinear velocity shape functions and constant 
pressure approximations in each element. In addition the time discretization follows a fully implicit 
first order finite difference scheme. 

The resulting system of non-linear algebraic equations is solved with a full Newton-Raphson 
technique that accounts for the moving grid positions due to the ALE formulation (Szabo and 
Hassager 1995). 

4.2. Automatic mesh displacement in time 

Two alternative methods have been used to control the deformation of the computational grid: 
an active semi-Lagrangian technique (Huerta and Liu 1988; Szabo and Hassager 1995) that ties 
into the implicit time-integration and a passive strategy that uses the velocity of a previous time-step 
to determine the new node positions. 

The active semi-Lagrangian technique is formulated as a general linear transformation of the 
current velocity field, whence 

3 

w~ (t) = ~ ~,k v;, (t), ~,k e [0;1] [201 
m =  I 

where i and {m, k} denote the node index and the vectorial directions, respectively. 
A pure Lagrange formulation is obtained when the ct~,k = 6,,~ for all i. Also, it is possible to let 

the c~,k 6mk for the nodes at the interface only, and then let the non zero components of i (Zmk 

decrease smoothly away from the interface. 
The passive strategy is a simple way of smoothing out the mesh deformations, for instance behind 

moving interfaces. The concept is to point out a node j which may be located at the fluid-fluid 
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R f0v* 
el ~ -  

and in fluid-phase 2 

interface. Subsequently another node i can be made to move relative to this interface node ]. The 
mesh velocity of  node i is obtained as the velocity of  node j multiplied by some weight factor. In 
order to simplify the computat ions the velocity of  n o d e ]  at the previous time-step, t - At, is used. 
Formally, the scheme reads 

w~o.k ( t)  = fl~ v~ ;~ (t - At) [21] 

where fl~ are constant during a time-step. The function j ( i )  simply specifies the node j that node 
i depends on. 

4.3.  D i sp lacemen t  in non-d imens ional  f o r m  

A way of  reducing the complexity of  the problem is to introduce a modified pressure, D~, based 
on the hydrostatic pressure in fluid-phase 2, i.e. the displaced fluid. More precisely, this variable 
substitution implies that 

- V ~  = - Vp + p2g. [22] 

It is convenient to introduce the following non-dimensional variables in the model: 
v* = v/ts, w* = w/tS, t* = tO~h, l = g ig  and ~ *  = D~h/(lX2O). Here h is the gap-width in a concentric 
annular geometry and 17 = Q/(= R~ ( 1 -  •2)) is the average linear velocity, i.e. the volumetric 
flow-rate divided by the cross-sectional area of  the annulus. The result of  this non-dimensionali- 
sation of the equations of  motion is" 

in fluid-phase 1 

+ (v* - w*).(V*v*) . . . .  ") = - N ~ V * ~ *  + V*2v * + B u l  [23] 
/ 

R /'0v* - w*).(V*v*) . . . .  ) V * ~ *  + V*2v *. [24] e2~ ot--- ~ + (v* = - 

Here Bu, Re1, Re2 and N~ are defined as in section 2.1. 
Furthermore,  the non-dimensional equation of  continuity must be fulfilled in each fluid phase, 

whence 
(V*.v*) . . . .  = 0. [25] 

5. S IMULATION RESULTS AND DISCUSSION 

In order to establish a well specified mathematical problem, we introduce a set of  boundary 
conditions. These are: no slip (i.e. v = 0) at solid walls and no flow perpendicular to the annular 
symmetry plane (defined in figure l) which however excludes possible helical solutions and the 
symmetry breaking gravity driven interfacial instability that Tehrani et al. (1992, 1993) have 
observed. The inflow is specified as the fully developed single fluid velocity field (of fluid l) based 
on a constant volumetric flow rate (this velocity field is both in concentric and eccentric annular 
geometries computed with a 2-D finite element solver) and a vanishing pressure is imposed at a 
plane surface far downstream the interface. The boundary conditions mean that the displacing fluid 
is "p inned"  at its initial position at z -- 0 for all times. Thus we do not use a model for a moving 
contact point. This is in agreement with the lubrication theory in section 3. At the interface between 
the two fluids continuity of  velocity and momentum flux is used. Thus there is no interfacial tension 
included. 

Three different finite element meshes were used for the simulations. These are (axial 
elements x radial elements x azimuthal elements): 115 × 8 x 6 (MESH 1), 115 x 16 x 6 
(MESH 2) and 115 x 16 x 12 (MESH 3). M E S H 1  and MESH 2 were used for the concentric 
simulations whereas MESH 3 was used in the eccentric simulations. Although no rigorous 
convergence results have been produced on these meshes the meshes were refined until a smooth 
solution was obtained. More precisely the large axial number of  elements were necessary at 
intermediate Reynolds numbers both to resolve the interface region and to eliminate numerical 
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a b c 
Figure 4. The zx-part of the interracial area in MESH 1. The figure shows the mesh as it deforms during 
time. As a measure of the deformation is used the axial movement, k2, of the centernode at the interface. 
(a) t* = 1.06, Az~ = 1.3h, (b) t* = 4.6, Azr = 6.6h, and (c) t* = 8.13. The horizontal line right to the meshes 

indicates the position of the interface node on the wall. 

osc i l la t ions .  F u r t h e r m o r e ,  la rge  b u o y a n c y  n u m b e r s  r e q u i r e d  a f iner  r e so lu t i on  ac ross  the a n n u l a r  
gap  ( M E S H  2 a n d  M E S H  3). 

In  o r d e r  to i l lus t ra te  the  m e s h  d i sc re t i s a t ion  and  the  d e f o r m a t i o n s  the re in  we h a v e  d r a w n  the 

in t e r f ace  r e g i o n  in a d e f o r m i n g  m e s h  d u r i n g  t ime  in t eg ra t i on .  In  f igure  4 for  M E S H  1 wi th  
R e  = 128 and  Bu = 0.4 ( F r  = 320). 

T h e  s m o o t h  d e f o r m a t i o n  o f  the  m e s h  in f igure  4 is o b t a i n e d  wi th  the  s e m i - L a g r a n g e  t e c h n i q u e  

def ined  in [20]. Th i s  is poss ib le  because  the re  are  no  r ec i r cu l a t i ons  at Bu = 0.4 ( F r  = 320). A t  la rger  

va lues  o f  Bu (especia l ly  at  Bu = 400 or  F r  = 0.32) the  t e c h n i q u e  in [21] is used to d e c o u p l e  the 

f low field f r o m  the n o d e  d i sp l acemen t s ,  excep t  at the  in te r face  where  nodes  are  L a g r a n g i a n .  
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5. I. Flow in a concentric annulus 

5.1.1. Dynamic shape of the interface. According to experiments by Long (1991) an increasing 
buoyancy  n u m b e r  induces s t rong recirculations in the vicinity of  the moving  interface for Reynolds  
number s  abou t  130. On  the cont rary  the uni-di rect ional  flow seems to be stabilised at low and high 
Reynolds  number s  (Re < 50 and  Re > 400). For  convenience a Reynolds  n u m b e r  of  128 was 
chosen as the star t ing po in t  for our  simulations.  

1 4  ~ 1 4  i 
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0 ..........d 
4.0 4.5 5.0 

r/h 

Figure 5, Concentric interface at Re = 128, Bu = 0.4 and 
Fr=320 (MESH 1). (a) t* = 1.06, (b) t*= 1.95, (c) 

t* = 2.83, (d) t* = 4.60 and (e) t* = 8.13. 

z/h 

12 

h 

10 

4 

2 

0 
4.0 4.5 5.0 

r/h 

Figure  6. Concen t r i c  interface at  Re = 128, Bu = 40 and  
F r = 3 . 2  ( M E S H  1). (a) t * =  1.06, (b) t * =  1.95, (c) 
t* = 2.83, (d) t*= 3.71, (e) t*= 4.60, (f) t*= 5.48, (g) 

t* = 6.37 and (h) t* = 7.25. 
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Figure 7. Concentric interface at Re = 64, Bu = 40 and 
F r = l . 6  (MESH1). (a) t*= 1.06, (b) t*=1.95, (c) 
t*= 2.83, (d) t*= 3.71, (e) t*= 4.60, (f) t*= 5.48, (g) 

t* = 6.37 and (h) t* = 7.25. 
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Figure 8. Concentric interface at Re = 128, Bu = 400 and 
Fr=0.32 (MESH2). (a) t*=1.06, (b) t*= 1.86, (c) 
t* = 2.74, (d) t* = 3.63, (e) t* = 4.51 and (f) t* = 5.39. 

At  very low values of Bu a characteristic Poiseuille like interface evolves in time. An  i l lustrat ion 
is given in figure 5. This is no t  surprising since Bu = 0 corresponds to two identical fluids. If  the 
buoyancy  n u m b e r  is increased to abou t  40 (Fr  = 3.2) the interface seems to be more flat at the 
f ront  as shown in figure 6 but  no steady interface shape seems to appear.  By lowering the Reynolds 
n u m b e r  to 64 (Fr  = 1.6) the interface seems to become more flat as indicated in figure 7. The fact 
that  the shape of the interface front  eventually becomes steady at large buoyancy  numbers  is 
apparen t  from figure 8 showing the interface at Re = 128 and Bu = 400 (Fr  = 0.32). 
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5.1.2. Secondary flow near the moving interface. The veloci ty  field close to the interface when 
Re = 128 and  Bu = 400 ( F r  = 0.32) is i l lus t ra ted in figure 9. The  vector  field d r a w n  is the cur ren t  
fluid veloci ty  minus  the veloci ty o f  the cen te rpo in t  at  the interface.  This  p rocedure  i l lustrates  the 
eventua l ly  s teady interface shape.  M o r e o v e r  one observes  s t rong rec i rcula t ions  tha t  in f ront  o f  the 
interface t r anspo r t s  fluid f rom the wall  region to the center  o f  the d o m a i n  whereas  fluid behind  
the interface is moved  f rom the center  to the wall  region.  In add i t i on  small  rec i rcula t ions  a p p e a r  
near  the interface front.  The s t rong rec i rcula t ions  can be unde r s tood  f rom mass  conserva t ion  and 
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Figure 9. The secondary flow near the interface at Re = 128, Bu = 400, Fr = 0.32 and t* = 4.51 (compare 
with figure 8(e)). 
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Figure 10. The displacement function, 1 - E vs a dimensionless time T*: Re = 128, Bu = 40, Fr = 3.2 
and e = 0. The symbols denote results from calculations with different values of L (see [5] for reference). 
O: L = h, +:  L = 2h, D: L = 3h, x: L = 4h, A: L = 5h and *: L = 6h. The curves denoted by (a) and 
(b) represent displacement in plug flow and in Poiseuille flow, respectively, whereas curve (c) is produced 

by the theory in section 3. 

b o u n d a r y  c o n d i t i o n s  as fo l lows.  D o w n s t r e a m  o f  the  in te r face ,  the  ve loc i ty  prof i le  is p a r a b o l i c  whi le  

the  in te r face  is flat. T h i s  necessar i ly  i nduces  f low f r o m  the  c e n t e r p l a n e  t o w a r d s  the  wal ls  be low the  

in te r face .  A s imi la r  a r g u m e n t  shows  tha t  the re  is f low f r o m  the  wal ls  t o w a r d s  the  c e n t e r p l a n e  a b o v e  

the  in te r face .  T h e  f low f r o m  the  c e n t e r p l a n e  t o w a r d s  the wal ls  be low  the  in te r face  a n d  the  o p p o s i n g  

f low a b o v e  the  in te r face  are  c o n n e c t e d  by a fa i r ly  flat r ec i r cu l a t i on  zone .  T h e  k inks  nea r  the  co rne r s  

a re  p r o b a b l y  due  to  insuff icient  r e so lu t i on  o f  this s e c o n d a r y  flow. 

5.1.3. Displacement efficiency. As  desc r ibed  in sec t ion  2.1 the  n o n d i m e n s i o n a l  measu re ,  E(T*) 
is a su i tab le  q u a n t i t y  to de t e rmine .  In  o r d e r  to  ex t rac t  as m u c h  i n f o r m a t i o n  as poss ib le  we p lo t  

the  l o g a r i t h m  o f  1 - E vs T*.  T h i s  a l lows  fo r  a m o r e  precise  c o m p a r i s o n  b e t w e e n  di f ferent  curves .  

In  f igure  10 we s h o w  the  resul ts  o f  n u m e r i c a l  c o m p u t a t i o n s  at  R e  = 128 a n d  Bu = 40 ( F r  = 3.2) 

in a c o n c e n t r i c  a n n u l u s  (wi th  K = 0.8). In  the  p lo t  we have  a cu rve  tha t  t ends  to ze ro  w h e n  T* 

a p p r o a c h e s  uni ty .  T h i s  is the  cu rve  for  p lug  flow. T h e  u p p e r  cu rve  represen t s  s imple  l a m i n a r  f low 
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C 

i°- o + 
a 
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Figure 1 h The displacement function, 1 - E vs a dimensionless time T*: Re = 128, Bu = 400, Fr = 0.32 
and e = 0. Symbols are defined as in figure 10. 
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Figure  12. The  d i sp lacement  funct ion,  1 - E vs a dimensionless  t ime T*: Re = 64, Bu = 400, F r  = 0.16 
and  e = 0. Symbols  are  defined as in figure 10. 
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(Poiseuille flow) whereas the lower curve is calculated using the lubrication theory in section 3. Note 
that the curves for Poiseuille flow and the lubrication prediction for Bu = 40 are relatively close. 
This indicates to us, that even at a buoyancy number of  40 the flow is largely unmodified by the 
density contrast. Furthermore, the numerical results fall between the two analytical results. 

With respect to accuracy of  the numerical results, we believe the main difficulty is in the 
resolution of  the lubrication boundary layers near the walls. We take the fairly good agreement 
between the two idealized analytical results and the numerical results in figure 10 as a support for 
the mesh resolution. 

According to the lubrication theory in section 3 the numerical results should have a collective 
curve provided L/h >> 1. We believe that the scatter in figure 10 is due to the condition L/h >> 1 being 
violated for some points. 

By increasing the Buoyancy number (e.g. enlarging the density difference) to 400 (Fr = 0.32) we 
observe a qualitative change in the evolution of  the efficiency. The plot in figure 11 shows that the 
displacement becomes more effective (the breakthrough occurs at a higher effectivity) and also, 
there now seems to be a clear collective curve for various values of  L in agreement with the 
lubrication theory. This indicates a quasi steady-state displacement, i.e. that the interface front has 
attained a steady shape with a thin developing shear layer near the wall (like a thin layer lubricating 
the transport of  a plug). For  comparison we note that it is necessary to use only half (almost 
exactly!) as much of  the displacing fluid when Re = 128 and Bu = 400 as for Bu = 0. If we lower 
the Reynolds number to 64 (so that Fr = 0.18) as in figure 12 we observe a significant change in 
the displacement efficiency. At Bu = 400 a lower Reynolds number seems to produce a thicker film 
layer near the wall and thence a lower efficiency than a larger value of Re. 

The existence of  a collective curve for the displacement efficiency would indicate that the shape 
of  the interface scales with the total volume of  fluid pumped. This has some far-reaching 
consequences. In practical cementing operations a ratio of  L/h ~ 0(104) is not unrealistic, while 
experiments and numerical simulations will be limited to much lower values. The scaling of the 
interface means that experiments and simulations for L/h ~ 0(102) would be sufficient to predict 
behaviour in practical cementing operations. 

5.2. Flow in an eccentric annulus 

5.2.1. Azimuthal transport o f  f luid at large buoyancy numbers. In a situation where the 
difference in fluid densities is negligible (Bu ~ 0) then uni-directional flow is maintained for some 
time even at non-zero Reynolds numbers as illustrated in figure 13. 
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Figure 13. The development of the interface front for Re = 0, Bu = 0 and e = 0.20 (MESH 3): (a) 
t* = 1.38, (b) t* = 2.26 and (c) t* = 3.15. 

I f  the  dens i ty  d i f fe rence  is large  the  s i m u l a t i o n s  s h o w  tha t  a s igni f icant  a m o u n t  o f  f luid is 

t r a n s p o r t e d  in the  a z i m u t h a l  d i rec t ion .  Th i s  s u p p o r t s  the  o b s e r v a t i o n s  by T e h r a n i  et al. (1993). 

T h i s  is i l lus t ra ted  in f igure  14 where  the  d e v e l o p m e n t  o f  the  in te r face  f ron t  is i l lus t ra ted  fo r  
Bu = 400, R e  = 128 a n d  e = 0.20. 

T h e r e f o r e  one  i m p o r t a n t  effect o f  a large  b u o y a n c y  n u m b e r  is a re la t ive  r e d u c t i o n  o f  the axial  

ve loc i ty  in the  wide  pa r t  o f  the  a n n u l u s  in c o m b i n a t i o n  wi th  a re la t ive  increase  o f  the  axia l  ve loc i ty  

in the  n a r r o w  pa r t  o f  the  g e o m e t r y .  T h e  cen t ra l  pa r t  o f  the  f low d o m a i n  d o m i n a t e d  by b u o y a n c y  
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Figure 14. The development of the interface front for Re = 128, Bu --- 400, Fr = 0.32 and e = 0.20 
(MESH 3): (a) t* = 1.38, (b) t* = 2.26 and (c) t* = 3.15. (Compare with figure 13.) 
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Figure  15. The  d isp lacement  funct ion,  1 - E vs a dimensionless  t ime T*: Re = 128, Bu = 400, F r  = 0.32 
and  e = 0.2. Symbols  are  defined as in figure 10. 

forces behaves like a plug with an axial velocity that is nearly constant in the azimuthal direction. 
The high shear rate regions near the walls appear to lubricate the transport of  this plug. 

5.2.2. Displacement efficiency revisited. In the calculations at Re = 128 and Bu = 400 we can 
compare the displacement efficiency for various eccentricities. We have obtained results for e = 0.0, 
0.2 and 0.5 as shown in figures 11, 15 and 16. In each figure the upper curve represents the efficiency 
function based on fully developed flow in the eccentric geometry as computed from a 2-D finite 
element method (Szabo and Hassager 1992). By comparing the figures we observe that in 
unidirectional flow there is a significant lowering of the function, E, as the annulus becomes more 
eccentric. In particular for e = 0.5 there is a clear reduction of E. There is, however, at Re = 128 
and Bu = 400 the very different effect. Here at a non-zero eccentricity the efficiency E is largely 
unchanged. Thus the displacement efficiency seems to become independent of the eccentricity for 
large values of  Bu (at Re = 128). 

10°" ~ ' , . . . .  , , 
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Figure 16. The displacement function, I - E vs a dimensionless time T*: Re = 128, Bu = 400, Fr = 0.32 
and e = 0.5. Symbols are defined as in figure 10. 
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6. CONCLUSIONS 

The arbitrary Lagrang~Euler  method may be used to simulate the displacement of one 
Newtonian fluid by another in a vertical annulus. The simulations support earlier experimental 
findings. In particular there appears to be a principle that allows the effect of the buoyancy number 
to be reduced or increased by adjusting the Reynolds number upwards or downwards respectively. 
This seems to be in agreement with a definition of the Froude number as the ratio of the Reynolds 
number to the Buoyancy number. Thus good displacement requires a large buoyancy number and 
a small Froude number. 

The two-dimensional results for Re = 128 and Bu = 400 show that particles in front of the 
interface are transported from the wall region into the center of the annular gap whereas particles 
behind the interface tend to move from the center to the wall. This is in qualitative agreement with 
experiments made by Long (1991) and Tehrani et al. (1993). The detailed velocity field near the 
interface seems to be rather complex involving small recirculation zones. 

A highly idealized lubrication theory has been proposed, that gives a simple expression for the 
efficiency of the displacement. The lubrication theory predicts that the displacement efficiency is 
independent of the ratio of the displacement length to the gap width, provided this value is 
sufficiently large. Comparison of the lubrication theory with the simulations suggest that the 
lubrication analysis tends to overpredict the displacement efficiency. The extension of this model 
to eccentric and deviated annuli remains as a future challenge. 

Simulations of displacement in a vertical eccentric annulus show that heavier displacing fluid is 
transported in the azimuthal direction from the wide towards the narrow section in the annular 
geometry. At large Buoyancy numbers and finite Reynolds numbers, this effect seems to make the 
displacement efficiency independent of eccentricity. 

Finally, the simulations support the prediction of the lubrication theory that the displacement 
efficiency becomes independent of the ratio of  the displacement length to gap width for large values 
of this ratio. However the simulations have been performed for a limited combination of buoyancy 
numbers, Reynolds numbers and eccentricities. More simulations will be needed to establish the 
ranges of validity for this scaling behaviour. 
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